PHYSICS 515B

ELECTROMAGNETIC THEORY

Prof. Fulvio Melia Fall 2025

Homework 2 (due Wednesday, October 6)

<u>Problem 1:</u> (a) Show that for a system of current-carrying elements in empty space, the total energy in the magnetic field is

$$W = \frac{1}{2c^2} \int d^3x \int d^3x' \, \frac{\mathbf{J}(\mathbf{x}) \cdot \mathbf{J}(\mathbf{x'})}{|\mathbf{x} - \mathbf{x'}|} \;,$$

where J(x) is the current density.

(b) If the current configuration consists of n circuits carrying currents I_1 , I_2 , I_3 ,..., I_n , show that the energy can be expressed as

$$W = \frac{1}{2} \sum_{i=1}^{n} L_i I_i^2 + \sum_{i=1}^{n} \sum_{j>i}^{n} M_{ij} I_i I_j.$$

Exhibit integral expressions for the self-inductances (L_i) and the mutual inductances (M_{ij}) .

Problem 2: Jackson 6.11

Problem 3: Jackson 6.16

Problem 4: Jackson 6.20 (a) and (b).